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A Multiresolution MoM Analysis of Multiport
Structures Using Matched Terminations

Renaud Loison, Raphaél Gillard, Jacques Citekhember, IEEEGerard Piton, and H. Legay

tures involving matched terminations with a one-dimensional mul-
tiresolution method of moment (MRMoM). Semiorthogonal spline
wavelets are used as basis and testing functions. For large struc-
tures, the MRMoM generates a sparse linear system, which per-
mits a significant reduction of the central processing unit time and
of the memory storage. The modeling of matched terminations also
enables a full characterization of multiport microstrip structures.
Theoretical results involving microstrip dipoles are presented and |

\
compared with experiments. b \\ L
Metallization
Index Terms—Method of moments, wavelets.

Abstract—This paper presents the modeling of microstrip struc- \/\'ETEC
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Fig. 1. Typical 1-D microstrip structure.
|. INTRODUCTION
. ) Testing Function
HE method of moments (MoM) is a well-known technique

to numerically solve the electric-field integral equation
(EFIE) encountered in electromagnetic problems [1]. Unfortu-
nately, this technique leads to a large and dense matrix, whic
often becomes computationally intractable when fine discretiza
tions or large structures are involved.

To overcome these difficulties, the use of wavelets bases i
often proposed. In practice, two main solutions are offered tc
use them. On one hand, the impedance matrix computed in th
conventional MoM can be compressed as an image with the hel

of the discrete wavelet transform (DWT) [2]-[5]. On the other w
hand, wavelets can be directly used as basis and testing fun y f
tions in the MoM [6]—[8]. In both cases, the technique leads to X

a sparse impedance matrix, which can be efficiently solved Big. 2. Basis and testing functions.

a sparse solver. This paper deals with the second approach. o ] )
As in [7] and [8], semiorthogonal (SO) spline wavelets owavelet basis, is proposed. This model, associated to the cal-

order 2 are chosen as basis functions as well as testing orfs4tion rules, permits the analysis of large linear arrays of mi-
These functions are known as Chui wavelets [10] and are §&9Strip electromagnetically coupled (EMC) dipoles. The mul-
fined on a bounded interval. It is shown, as in [7] and [8], thdrésolution method of moments (MRMoM) analysis of these
the use of this basis leads to a sparse system. In this paper, fré@mples demonstrates the efficiency of the proposed approach
cise rules are given to efficiently calculate and store the mg2mpared to the conventional MoM technique.

trix. A novel multiscale approach of the calculation allows direct First: the application of wavelets in the MoM is presented.
computation of the sparse system and, hence, avoids the storaggond. the formulation of the matched load model is described.
of a dense matrix. It is shown that the sparsity increases withen, in order to optimize the CPU time and memory storage,
the size of the linear system. Since large structures are usugfijerent steps of the implementation are specified. The capa-
multiport structures, it is important for the multiresolution analPilities of the proposed technique are then illustrated with the
ysis to be able to take matched terminations into account. §nulation of linear arrays of microstrip dipoles. To conclude,

this end, a new formulation of the matched load model, in tfeComMparison with the DWT application is made and the limi-
tations and advantages of solving integral equations with Chui
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Fig. 3. Chui basis.
mixed-potential integral equation (MPIE) [1]: wheref; ;(#) and f, ;(#’) are the testing and expansion func-
tions, respectively, an§l; andS’; are the supports of these func-
tions.

& Bme(7) = &, / / [/ Ts(7)
& B. Chui Wavelet Basis

. Efficiency and accuracy of the computation can be improved
+VGv(77/77’)ps(77')} dS"| (1) by the choice of good bases. A functigifu) is said to have a
vanishing moment of order if

wherep, is the charge density and is related to the surface cur-

rentJs by the continuity equatior@ , andG+y- are the multilay-

ered dielectric dyadic and scalar Green’s functions [11]@&nd /z/)(u,)u,n_l =0. 4)
is the unit vector perpendicular to the surface of the conductor.

The aim of the MoM is to determine the surface current flowing 5 cen's functions are smooth enough to be approximated by a
on the metallizations. This surface current is induced by an €36y, n o mial expression of orde¥, and if the basis or the testing
citation that can be an incident electric fiel#'¢) or a current function has\' vanishing moments of ordgt N), then
generator. Since only electrically narrow structures are consj ) clearly shows that the associated matrix élerr;ent vanishes or
ered here, the analysis is restricted to the longitudinal curre Lcomes very small. Since wavelets have vanishing moments
Th'si I|m|tsf tﬂe ap_phcatl_onf of the .prelsent(:]d tech_m?]u'e to e perties, they are suitable candidates as basis and testing func-
analysis of thin microstrip lines or dipoles whose width is smafl, s (6], It can be noticed that if both basis and testing functions

compared to the wavelength. _ _ have vanishing moments, the cancellation effect will be more
The surface current is expanded on a set of basis fu”Ct'ol?ﬁportant which suggests a Galerkin scheme

and (1) is weighted using a set of testing functions. This yields

) In this paper, basis functions are two-dimensional ones
the linear system

(Fig. 2). In the longitudinal direction, Chui wavelet basis of
order 2 is chosen, while in the transverse direction, classical
[Z11] = [V]. @) pulse functions are applied. On the other hand, testing functions

. ) . ) are reduced to 1-D functions, which are the Chui functions in
Here,[Z] is the impedance matrix, whi[g] and[V] are the vec- 4 ongitudinal direction and Dirac functions in the transverse

tors of the unknown current coefficients and the tested incidetme_ This choice keeps the advantages of the Galerkin scheme
electric field, respectively. This linear system must be solved ji\; o suppressing one integration in (3).

order to calculate the unknown coefficiefif The elements of

; . . The Chui system is SO and is generated by two different func-
the impedance matrix are obtained from

tions. The scaling function is the well-known rooftop, while
the mother wavelet is a piecewise linear function (Fig. 3). This
g F NG (7N (7 o wa\{elet has aﬂmte su_pport, is .symn."ne'Frlc, apd has a simple an-
W= /// T ilMGalr/T) fo, 5(77) dS: S alytical expression. Since Chui basis is defined on a bounded
Si 5] interval, special functions are introduced at the boundaries. As
J P Loner 7 =n o o IN[8], the special wavelets are chosen with vanishing values at
+w // // FoiON G T/T)V Jo, () dS; dS; the boundaries. The inner wavelet has two vanishing moments,
s St while the special boundary wavelet has only one vanishing mo-
(3) ment of order 2.
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Fig. 4. Matched termination (propagation in thalirection) and return loss versus frequency.

The functions of the Chui basis are the dilated and translatggde a new formulation of the model presented in [9]. If we
versions of these mother wavelets and scaling functions as fobnsider Fig. 4(a), the formulation of the matched load model is
lows:

n—Nrer
Gor(1) = H(2°u—k) o x(u)=(2°u—k)  (5) J(zn) = < NL)( > I(xp). exp(—iB(n — p) dw))

p=n—1
whereg(u) is the scaling functiony(w) is the mother wavelet, with
k is the translation factor, ands the resolution level. The mul- _
tiresolution expansion of the surface current flowing on a 1-D n=NN N = Neona "
microstrip metallization oriented along theaxis then takes the |n fact, this equation can be seen as an absorbing condition. The
following form: currentdensity ataplane ofthe ling,( is forced to be equal to the
s 2°—1 average of the currentdensitie\t; reference planes:() with
ZISO W Pos 1(7) + Z Z I\pkqjs N ?)] (6) the corresponding phasgshifts.Thiscondition isappliéd@m
planes at the end of the line and genera¥gs,q equations. The
main difference with [9] is that because of the wavelet expansion
where¢, is the unit vector of ther axis, I3} , and I/, are (g), each current density taken at a reference plane is not simply
the unknown coefficients associated with the scaling functiessociated to a single unknown coefficient. Since the supports of
and the wavelets, and, and s, indicate the coarsest andwaveletsand scaling functions overlap atan arbitrary plane of the
finest resolution levels, respectively. In practice, the multilevehicrostrip line, the current density is related to several unknown
decomposition starts at the coarsest possible level (the smallgsdfficients, as can be seen from (6).
so as possible). By this means, the number of scaling functionsrhe]\rmml equations (7) are added in the linear system where
that produce the dense part of the impedance matrix is reducgy replace the projections on the boundary testing functions.

For the Chui basis, the lowest resolution levedjs= 2. Under |n the case of a matched load placed at the right-hand side of the
this value, the associated wavelgf, has a support larger jine, these functions are

than the interval, which is not physical. In (6), because of the
two-dimensional nature of the basis functions, these waveldts, 20, Vs (251, with S = sy, ..., (5u—Necona+2)-
are noted with capital letters. In the expansidy, o(#) and (8)
d,, 20 (7) are left- and right-hand-side half-rooftops, whil€Experimentally, good results are obtained with,,q = 3 and
U, o) and¥, +._1(7) are left- and right-hand-side boundaryV..t = 7. Fig. 4(b) shows the return loss for a matched mi-
wavelets. A half-rooftop is used only when the surface curreatostrip line calculated with these parameters.
does not vanish at the corresponding metallization extremity, or
in other words, when an excitation or a matched load is placed IV. NUMERICAL OPTIMIZATION
at this extremity. There are no testing functions associated wit
the two half-rooftops. It is possible to use these two corr
sponding equations of the linear system to set the bound
currents to the desired value.

As is shown in [7], Chui basis of order 2 is a suitable ch0|
for the MRMoM. The Chui system combines the advantages
both rooftops and wavelets.

s=so k=0

hThe principal advantage of using wavelets in the MoM is
e sparsity of the calculated impedance matrices. To fully
Yehefit from the wavelet scheme in terms of CPU time and
memory storage, it is first essential to predict in advance which

?efhments of the matrix can be omitted. This prediction of the

[Bcalization of the negligible elements permits calculation of
fewer contributions and storage of only the significant terms.
Secondly, the calculation of the nonnegligible elements must
not be too time consuming. Finally, the computation of the

In the MRMoM, the current density is expanded on a wavelsystem’s solution must take advantage of the sparse structure
basis. In order to simulate a matched termination, we havedbthe impedance matrix.

I1l. M ATCHED LOAD
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of the larger element of the sub-matrix, is smaller than®1ére
Fine area set to zero.
size : (W+L)*(W+L) Another way to compute the sub-matrix would be to calculate
AN \ directly all elements in the wavelet basis. However, this tech-
Metallization nigue has not been chosen because it largely increases the CPU
size : WL time, as can be seen in Table I. This table presents the average

CPU time for the computation of a single matrix element. These
results are obtained with the calculation of a simple microstrip
line on an HP900O series 160 computer. On the contrary, the
change of basis only represents 2% more time in the computa-
tion of one element matrix.
Thus, for local interactions, a change of basis associated to
In (3), when the distance between the observer poiand a thresholding procedure is used. For sub-matrices involving
the source poinf”’ is “sufficient,” Green’s functions vary very distant metallizations, a coarse approximation is applied. The
slowly and can be represented by low-order polynomial funtesulting MRMoM impedance matrix is then a sparse one. To
tions. When the basis or the testing function is a wavelet, it hbgnefit from this property of the linear system, a sparse solver
numerous vanishing moments. As a consequence, when thesgociated to a sparse storage of the impedance matrix is chosen.
two properties are satisfied simultaneously, integrals involved in Two families of matrix solvers exist: direct and iterative. For
(3) become very small and the resultant matrix term can be rsparse systems, iterative solvers are commonly preferred be-
glected. In this section, a heuristic criterion is proposed to quagause the matrix is not modified during the inversion and it
tify what a “sufficient” distance should be. maintains its sparse behavior. Unfortunately, these solvers do
Fig. 5 presents an area associated to a 1-D metallization calted necessarily converge and the convergence rate depends on
the “fine area.” The criterion used can be stated as folldfvs:the condition number of the treated system. Thus, the direct
the fine areas of two metallizations do not overlap, a coarse apparse solver UMFPACK2t2has been chosen.
proximation is made. A coarse approximation means that when
calculating interactions between the two metallizations, only the V. NUMERICAL RESULTS
matrix terms involving two scaling functions are taken into ac-

count The ones that involve at least one wavelet are considerecln order to evaluate_the real cgpabllltle_s of the MRMoM,
. : ) linear arrays of EMC dipoles of different size have been ana-
to be equal to zero. The dimensions of the fine area have b

e . .
optimized experimentally and the calculation gives good resuTYsz ed. These struptures easily perm|t. the study of th? perfor-
in all tested cases. mance as a function of the proplem size. The ca_llculat|on of an
EMC dipole generates a small linear system of size 50 (17 cells
on the dipole and 33 cells on the feeding line) so that an array
B. Change of Basis of N dipoles generates a linear systemMofx 50 unknowns.

When two metallizations are not far away from each othergig. 6 presents the studied structures made of dipoles disposed

when the self interaction of a metallization is considered, t ong an axis with a cqnstant spacing of 10 mm. These elemen-

coarse approximation is not possible. In these cases, we hav%afg a'ntennas are fed independently, thus an array dipoles

evaluate more terms when calculating the interaction betwece(?'lnStItUtes anv-port structure.

these two metallizations. In particular, interactions involvin )

wavelets are not necessarily negligible. A simple technique%b Elementary EMC Dipole

compute these interactions efficiently is proposed. The elementary EMC dipole is calculated with the conven-
The corresponding sub-matrix is first computed with rooftopional MoM, the MRMoM with compression, and the MRMoM

basis at a fine resolution level (= s, + 1). This first step Without compression. The MRMoM is calculated through the

simply consists in calculating a conventional MoM sub-matrixchange of basis technique because all metallization interactions

Through a simple change of basis, on expansion and weightig “local” and the coarse approximation is not possible. The

Fig. 5. Definition of the fine area.

A. A-Priori Criterion

functions, the sub-matrix in the wavelet basis{ 2, ..., s, — compression rate is defined as follows:
1, s,) is then easily obtained. This change of basis is performed
on columns (basis functions) and rows (testing functions) of the R(%) = NbZQerO % 100 (9)

sub-matrix. Obviously, because of the matrix transform proce-

dure, this technique will be more time consuming than the Clagp o reNp7ero is the number of elements set to zero in the com-
sical rooftop MoM, but one must remember that the transforfye sse matrix and is the size of the linear system. In the case
is only applied for “local” interactions, when metallizations ar fthe calculation of the EMC dipole, a compression rate of 50%

close to each other. Nevertheless, the transformation time is 9@N; hieved by simply applying the thresholding scheme. As is
erally negligible compared to the filling time. '

Afterwards, a thresholding procedure is applied on the ob-

tained sub-matrix. Indeed, some of the elements, even in self-in- ) . .
1T. A. Davis and I. S. Duff, UMFPACK version 2.2: Unsymmetric-pattern

teraction sub-matrices, are small enough to be neglected \lfkitrontal package, 1997. [Online]. Available: ftp://ftp.cis.ufl.edu/pub/um-
practice, elements whose modulus, normalized to the modupask/
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TABLE |
COMPARISON OFCPU TiME PER MATRIX ELEMENT FOR THE CALCULATION OF A MICROSTRIPLINE

Size of the linear system: 33

Line length: 32 mm, width: 2.2 mm (50€2)

Substrate: er = 2.55, H=0.8mm

Conventional MoM Wavelet, computatifm with Wavelet, direct
change of basis computation
CPU time (s) 141 E-03 144 E-03 8.95E-03
Normalized CPU time 1 1.02 6.35
Top view the secondary diagonals, which correspond to self-interactions
or near-functions interactions.
PortN e ez B. Coupling Between Two Dipoles
Port N-1 Fig. 8 shows results obtained from the study of the coupling
R Q2777722 effects between two EMC dipoles. The entire structure is first
simulated using the MRMoM without neglecting elements of
the impedance matrix; this calculation is called the “fine” one. In
Port 2 fche second c_alculation, the coarse _appro_ach is used. Practically,
-------------------------------------------- 72777777772 in that case, it means all the terms involving wavelets are set to
‘ zero in the sub-matrix corresponding to the interaction between
10“‘“‘1: Lo the two antennas.
Fig. 8(b) depicts the input impedance of the first dipole
@) versus the normalized distaneg The input impedance is
i calculated at the frequency of 8.3 GHz, which corresponds
Top view to the resonant frequency of the dipole. First, it is noted that
(unit : mm) the coarse approximated solution is very close to the fine one.
379 62 The maximum margin between the two curves, even for small
>l distances, is about 2 dB, which means that the coarse repre-
2.1I D ] 2T sentation of the current reasonably models coupling between
'[ b i—— metallizations. Secondly, the two results converge for distances
! 124 larger tharD.5)o. Beyond this value, the coarse approximation
gives exactly the same results as the fine calculation. These
Side view regults show that the criterior_l proposed in Section IV-A is
Microstip line Microstip dipole sunabllc_a. Ic?d'gms casef, the criterion would correspond to a
\ - normalized distance of one.
A) \ ¥ (l):g C. Linear Arrays
Gmundplane/ € € ,~2.17 Fig. 9 depicts the sparsity achieved when calculating the

(b)

Fig. 6. (a) Array of EMC dipoles. (b) Elementary EMC dipole.

linear arrays with the MRMoM. The compression is obtained
by applying the rules defined in Section IV. For an array of ten
dipoles, or a system of 500 unknowns, the compression rate is
already 91% and grows quickly, reaching 98% in the case of

shown in Fig. 7(b), this compression does not affect the cahe array of 200 elements.

culated input impedance. In the conventional MoM used here,This sparsity permits an important reduction of the CPU time.
the current density is expanded on a rooftop basis and pulséesaddition to this, the memory storage is also reduced and
are used as testing functions. It is not strictly equivalent to thieis reduction allows calculation of larger structures with the
MRMoM that uses a quasi- Galerkin scheme, as explained pMRMoM than with the conventional MoM. Indeed, with the
viously. Nevertheless, both computations are in good agreemBtRMoM approach, we never compute and store a dense ma-
with experimental results. Fig. 7(a) shows a grayscale plot dioix, the impedance matrix is directly stored in the sparse format.
tained by taking the logarithm of the elements of the compress@fth this technique, we are able to go further than the memory
MRMoM impedance matrix. This clearly demonstrates that tHienits of the computer. Here, with the available memory, it is
nonnegligible elements are located on or near the diagonalnmt possible to store complex matrices larger than 568800.



124 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 1, JANUARY 2001

5 10 15 20 256 30 35 40 45 80

(@
—— Conventional MoM
0 - - - Wavelet MoM
-2 A ¢ Wavelet MoM (R=50%)
-4 3 o Experiment

1S11] (dB)

-20 : . T T ;
8 8.1 8.2 8.3 84 8.5
Frequency (GHz)
200
L 4
150 ~ [
. 100 X
= 0 :
@/ [ t
g -50 :'
S -100 A ;
-150 + .
-200 T . ; . .
8 8.1 8.2 8.3 8.4 8.5
Frequency (GHz)
(b)

Fig. 7. Calculation results of the elementary EMC dipole.
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Fig. 9. Achieved matrix sparsity.

Fig. 10(a) and (b) depicts the filling time and inversion time as
a function of the number of calculated dipoles. For arrays with
more than 25 dipoles, the filling time is shorter in the case of
the MRMoM. In the case of a 100-dipole array, the filling time
is divided by a factor of four. The reduction of the inversion
time is much more spectacular. In the case of the 100-element
array, the matrix inversion time is divided by a factor of 13. It
should be observed that, for the calculation of the solution of the
conventional MoM, a direct solver is also used. This reduction
is possible thanks to the achieved compression rate of 97.5%. In

This size corresponds to an array of 110 dipoles. In the caselu case of the 200-dipole array, the calculation of the solution
the MRMoM, thanks tothe achieved sparsity, we are able tdthe linear system of 10 000 unknowns takes only 20 min{
compute an array of 200 dipoles. Therefore, in Fig. 10, all CP#3%).

time charts stop at arrays of 100 dipoles for the conventionalln Fig. 10(c) and (d), the total calculation time as well as
MoM, while results obtained for arrays of 200 dipoles are pre¢he total required memory are depicted as a function of the

sented in the case of the MRMoM.

array’s size. The calculation of the 100—element array is ten
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Fig. 10. Performances of the approach versus the size of the problem.
times longer and requires three times more memory with the 1.E+03 7 —— Conventional MoM
conventional MoM than with the MRMoM. In the limitngcase | =~ Wavelet MoM
of 200 dipoles, the MRMoM requires 160 Mb, while the dense 1.E+02 1
matrix would have needed 700 Mb to stored. These two curves g
demonstrate the real advantages of the MRMoM to study such < 18401
structures. g
Fig. 11 offers results that compare the conventional MoM g 1-E+001
and MRMoM. The required memory is plotted on a log scale.
1.E-01 A

Since memory used in classical MoM ha®©aN?) behavior,
we can determine that for the MRMoM, the required memory
has aO(N?3/2) behavior. 1802 ‘ ‘ ‘
Fig. 12 shows the calculated radiation patterns of a 1E01 - 1EH02 1E403 1.Ev04
ten-dipole antenna. In the two diagrams, the direct component Number of unknowns

in the H-plane is depicted. In Fig- 12(a)’ all elements are feeig. 11. Required memory versus the number of unknowns (log scale).
while in Fig. 12(b), only the fifth element is fed and the other

potr_ts are;_nlgtched& The r}att;errfl_?tr:n IF '9. 1t2(bf)tr?re calleqrtrl;lgw formulation of the MoM matched load model is proposed.
active radiation patterns ot the Titth element ot the array. I~€alculation rules are also given in order to optimize the algo-
radiation pattern of the single dipole has begn _added n Orderritt?lm and to take advantage of the wavelet scheme. The imple-
evaluate thg effects of the array on the radiation paFtern .Of Rltnted algorithm has been shown to be very efficient for the
eleme'nt. This .ShOV\./S that the rad'at.'of‘ pattern of a d|pqle N @ltulation of linear arrays of EMC dipoles compared to conven-
array is less directive than the radiation pattern of an isolat gnal MoM. The calculation time is reduced by a factor of 13
d'pgla'é&tﬁ two d|agr|f|;1ms, results of the conventional Mo hile the required memory is divided by three for the calculation
an ol agree well. of a 100-dipole array. The presented technique allows the cal-
culation of larger structures for a particular computer memory
size than with the conventional MoM.

In this paper, a complete MRMoM analysis of 1-D structures There is another way to use wavelets in the MoM in electro-
using matched terminations has been presented. To this enthagnetic problems. Asin [5], the DWT can be applied on the en-

VI. CONCLUSION AND DISCUSSION
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Fig. 12. Radiated fields of a ten dipole array.

tire impedance matrix calculated through a conventional MoM. [9] R. Gillard, J. H Corre, M. Drissi, and J. Citerne, “A general treatment of

In this technique, basis and testing functions do not matter, and matched terminations_ using integral equations—Modeling and applica-
.. . . tions,” IEEE Trans. Microwave Theory Teclvol. 42, pp. 2545-2553,

sophisticated wavelet bases can be used even in a simple con- g 1994,

ventional MoM. In [5], Daubechies orthogonal wavelets and[10] C. K. Chui and E. Quak, “Wavelets on a bounded interval Rimer-

biorthogonal spline wavelets are used in the calculation of linear ~ ical Methods of Approximation Theqr. Braess and C. L. Schumaker,

. . Eds. Bassel, Germany: Binkhauser Verlag, 1992, vol. 9, pp. 53-75.
arrays of rectangular patches. The two-dimensional nature chl] J. Mosig and F. Gardiol, “A dynamical radiation model for microstrip
this elementary antenna constitutes the main difference with the  structures,”Advances Electron. Electron Physol. 59, pp. 139-237,
structures presented in this paper. In [5], the application of the 1982
DWT allows the best case to reduce the computation time by
a factor of three, while the required memory is not really re-
duced because the entire MoM matrix must be stored before
transformation. These results are not as spectacular as res
obtained with the MRMoM. With the MRMoM, the impedance
matrix is directly calculated in a wavelet basis in a compress
format. By this way, the transformation time is avoided and tt
filling time is also reduced. This partially explains the large dit
ferences existing between the performances of the two te
nigues. The exact comparison will be made when the MRMo
has been extended to two-dimensional structures. This exten-

sion is currently under investigation.
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