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A Multiresolution MoM Analysis of Multiport
Structures Using Matched Terminations

Renaud Loison, Raphaël Gillard, Jacques Citerne, Member, IEEE, Gerard Piton, and H. Legay

Abstract—This paper presents the modeling of microstrip struc-
tures involving matched terminations with a one-dimensional mul-
tiresolution method of moment (MRMoM). Semiorthogonal spline
wavelets are used as basis and testing functions. For large struc-
tures, the MRMoM generates a sparse linear system, which per-
mits a significant reduction of the central processing unit time and
of the memory storage. The modeling of matched terminations also
enables a full characterization of multiport microstrip structures.
Theoretical results involving microstrip dipoles are presented and
compared with experiments.

Index Terms—Method of moments, wavelets.

I. INTRODUCTION

T HE method of moments (MoM) is a well-known technique
to numerically solve the electric-field integral equation

(EFIE) encountered in electromagnetic problems [1]. Unfortu-
nately, this technique leads to a large and dense matrix, which
often becomes computationally intractable when fine discretiza-
tions or large structures are involved.

To overcome these difficulties, the use of wavelets bases is
often proposed. In practice, two main solutions are offered to
use them. On one hand, the impedance matrix computed in the
conventional MoM can be compressed as an image with the help
of the discrete wavelet transform (DWT) [2]–[5]. On the other
hand, wavelets can be directly used as basis and testing func-
tions in the MoM [6]–[8]. In both cases, the technique leads to
a sparse impedance matrix, which can be efficiently solved by
a sparse solver. This paper deals with the second approach.

As in [7] and [8], semiorthogonal (SO) spline wavelets of
order 2 are chosen as basis functions as well as testing ones.
These functions are known as Chui wavelets [10] and are de-
fined on a bounded interval. It is shown, as in [7] and [8], that
the use of this basis leads to a sparse system. In this paper, pre-
cise rules are given to efficiently calculate and store the ma-
trix. A novel multiscale approach of the calculation allows direct
computation of the sparse system and, hence, avoids the storage
of a dense matrix. It is shown that the sparsity increases with
the size of the linear system. Since large structures are usually
multiport structures, it is important for the multiresolution anal-
ysis to be able to take matched terminations into account. To
this end, a new formulation of the matched load model, in the
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Fig. 1. Typical 1-D microstrip structure.

Fig. 2. Basis and testing functions.

wavelet basis, is proposed. This model, associated to the cal-
culation rules, permits the analysis of large linear arrays of mi-
crostrip electromagnetically coupled (EMC) dipoles. The mul-
tiresolution method of moments (MRMoM) analysis of these
examples demonstrates the efficiency of the proposed approach
compared to the conventional MoM technique.

First, the application of wavelets in the MoM is presented.
Second, the formulation of the matched load model is described.
Then, in order to optimize the CPU time and memory storage,
different steps of the implementation are specified. The capa-
bilities of the proposed technique are then illustrated with the
simulation of linear arrays of microstrip dipoles. To conclude,
a comparison with the DWT application is made and the limi-
tations and advantages of solving integral equations with Chui
wavelet expansion are discussed.

II. MoM WITH CHUI WAVELETS

A. MoM Formulation

A typical one-dimensional (1-D) microstrip structure is
shown in Fig. 1. The EFIE can be written as the following

0018–9480/01$10.00 © 2001 IEEE
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(a) (b)

Fig. 3. Chui basis.

mixed-potential integral equation (MPIE) [1]:

(1)

where is the charge density and is related to the surface cur-
rent by the continuity equation. and are the multilay-
ered dielectric dyadic and scalar Green’s functions [11] and
is the unit vector perpendicular to the surface of the conductor.
The aim of the MoM is to determine the surface current flowing
on the metallizations. This surface current is induced by an ex-
citation that can be an incident electric field ( ) or a current
generator. Since only electrically narrow structures are consid-
ered here, the analysis is restricted to the longitudinal current.
This limits the applications of the presented technique to the
analysis of thin microstrip lines or dipoles whose width is small
compared to the wavelength.

The surface current is expanded on a set of basis functions,
and (1) is weighted using a set of testing functions. This yields
the linear system

(2)

Here, is the impedance matrix, while and are the vec-
tors of the unknown current coefficients and the tested incident
electric field, respectively. This linear system must be solved in
order to calculate the unknown coefficients. The elements of
the impedance matrix are obtained from

(3)

where and are the testing and expansion func-
tions, respectively, and and are the supports of these func-
tions.

B. Chui Wavelet Basis

Efficiency and accuracy of the computation can be improved
by the choice of good bases. A function is said to have a
vanishing moment of order if

(4)

If Green’s functions are smooth enough to be approximated by a
polynomial expression of order , and if the basis or the testing
function has vanishing moments of order , then
(3) clearly shows that the associated matrix element vanishes or
becomes very small. Since wavelets have vanishing moments
properties, they are suitable candidates as basis and testing func-
tions [6]. It can be noticed that if both basis and testing functions
have vanishing moments, the cancellation effect will be more
important, which suggests a Galerkin scheme.

In this paper, basis functions are two-dimensional ones
(Fig. 2). In the longitudinal direction, Chui wavelet basis of
order 2 is chosen, while in the transverse direction, classical
pulse functions are applied. On the other hand, testing functions
are reduced to 1-D functions, which are the Chui functions in
the longitudinal direction and Dirac functions in the transverse
one. This choice keeps the advantages of the Galerkin scheme
while suppressing one integration in (3).

The Chui system is SO and is generated by two different func-
tions. The scaling function is the well-known rooftop, while
the mother wavelet is a piecewise linear function (Fig. 3). This
wavelet has a finite support, is symmetric, and has a simple an-
alytical expression. Since Chui basis is defined on a bounded
interval, special functions are introduced at the boundaries. As
in [8], the special wavelets are chosen with vanishing values at
the boundaries. The inner wavelet has two vanishing moments,
while the special boundary wavelet has only one vanishing mo-
ment of order 2.
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(a) (b)

Fig. 4. Matched termination (propagation in thex-direction) and return loss versus frequency.

The functions of the Chui basis are the dilated and translated
versions of these mother wavelets and scaling functions as fol-
lows:

(5)

where is the scaling function, is the mother wavelet,
is the translation factor, andis the resolution level. The mul-

tiresolution expansion of the surface current flowing on a 1-D
microstrip metallization oriented along theaxis then takes the
following form:

(6)

where is the unit vector of the axis, and are
the unknown coefficients associated with the scaling function
and the wavelets, and and indicate the coarsest and
finest resolution levels, respectively. In practice, the multilevel
decomposition starts at the coarsest possible level (the smallest

as possible). By this means, the number of scaling functions
that produce the dense part of the impedance matrix is reduced.
For the Chui basis, the lowest resolution level is . Under
this value, the associated wavelet has a support larger
than the interval, which is not physical. In (6), because of the
two-dimensional nature of the basis functions, these wavelets
are noted with capital letters. In the expansion, and

are left- and right-hand-side half-rooftops, while
and are left- and right-hand-side boundary

wavelets. A half-rooftop is used only when the surface current
does not vanish at the corresponding metallization extremity, or
in other words, when an excitation or a matched load is placed
at this extremity. There are no testing functions associated with
the two half-rooftops. It is possible to use these two corre-
sponding equations of the linear system to set the boundary
currents to the desired value.

As is shown in [7], Chui basis of order 2 is a suitable choice
for the MRMoM. The Chui system combines the advantages of
both rooftops and wavelets.

III. M ATCHED LOAD

In the MRMoM, the current density is expanded on a wavelet
basis. In order to simulate a matched termination, we have to

give a new formulation of the model presented in [9]. If we
consider Fig. 4(a), the formulation of the matched load model is

with

(7)

In fact, this equation can be seen as an absorbing condition. The
currentdensityataplaneof the line() is forcedtobeequal to the
average of the current densities at reference planes ( ) with
thecorrespondingphaseshifts.Thiscondition isappliedat
planes at the end of the line and generates equations. The
main difference with [9] is that because of the wavelet expansion
(6), each current density taken at a reference plane is not simply
associated to a single unknown coefficient. Since the supports of
wavelets and scaling functions overlap at an arbitrary plane of the
microstrip line, the current density is related to several unknown
coefficients, as can be seen from (6).

The equations (7) are added in the linear system where
they replace the projections on the boundary testing functions.
In the case of a matched load placed at the right-hand side of the
line, these functions are

with
(8)

Experimentally, good results are obtained with and
. Fig. 4(b) shows the return loss for a matched mi-

crostrip line calculated with these parameters.

IV. NUMERICAL OPTIMIZATION

The principal advantage of using wavelets in the MoM is
the sparsity of the calculated impedance matrices. To fully
benefit from the wavelet scheme in terms of CPU time and
memory storage, it is first essential to predict in advance which
coefficients of the matrix can be omitted. This prediction of the
localization of the negligible elements permits calculation of
fewer contributions and storage of only the significant terms.
Secondly, the calculation of the nonnegligible elements must
not be too time consuming. Finally, the computation of the
system’s solution must take advantage of the sparse structure
of the impedance matrix.
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Fig. 5. Definition of the fine area.

A. A-Priori Criterion

In (3), when the distance between the observer pointand
the source point is “sufficient,” Green’s functions vary very
slowly and can be represented by low-order polynomial func-
tions. When the basis or the testing function is a wavelet, it has
numerous vanishing moments. As a consequence, when these
two properties are satisfied simultaneously, integrals involved in
(3) become very small and the resultant matrix term can be ne-
glected. In this section, a heuristic criterion is proposed to quan-
tify what a “sufficient” distance should be.

Fig. 5 presents an area associated to a 1-D metallization called
the “fine area.” The criterion used can be stated as follows:If
the fine areas of two metallizations do not overlap, a coarse ap-
proximation is made. A coarse approximation means that when
calculating interactions between the two metallizations, only the
matrix terms involving two scaling functions are taken into ac-
count. The ones that involve at least one wavelet are considered
to be equal to zero. The dimensions of the fine area have been
optimized experimentally and the calculation gives good results
in all tested cases.

B. Change of Basis

When two metallizations are not far away from each other or
when the self interaction of a metallization is considered, the
coarse approximation is not possible. In these cases, we have to
evaluate more terms when calculating the interaction between
these two metallizations. In particular, interactions involving
wavelets are not necessarily negligible. A simple technique to
compute these interactions efficiently is proposed.

The corresponding sub-matrix is first computed with rooftop
basis at a fine resolution level ( ). This first step
simply consists in calculating a conventional MoM sub-matrix.
Through a simple change of basis, on expansion and weighting
functions, the sub-matrix in the wavelet basis (

) is then easily obtained. This change of basis is performed
on columns (basis functions) and rows (testing functions) of the
sub-matrix. Obviously, because of the matrix transform proce-
dure, this technique will be more time consuming than the clas-
sical rooftop MoM, but one must remember that the transform
is only applied for “local” interactions, when metallizations are
close to each other. Nevertheless, the transformation time is gen-
erally negligible compared to the filling time.

Afterwards, a thresholding procedure is applied on the ob-
tained sub-matrix. Indeed, some of the elements, even in self-in-
teraction sub-matrices, are small enough to be neglected. In
practice, elements whose modulus, normalized to the modulus

of the larger element of the sub-matrix, is smaller than 10are
set to zero.

Another way to compute the sub-matrix would be to calculate
directly all elements in the wavelet basis. However, this tech-
nique has not been chosen because it largely increases the CPU
time, as can be seen in Table I. This table presents the average
CPU time for the computation of a single matrix element. These
results are obtained with the calculation of a simple microstrip
line on an HP9000 series 160 computer. On the contrary, the
change of basis only represents 2% more time in the computa-
tion of one element matrix.

Thus, for local interactions, a change of basis associated to
a thresholding procedure is used. For sub-matrices involving
distant metallizations, a coarse approximation is applied. The
resulting MRMoM impedance matrix is then a sparse one. To
benefit from this property of the linear system, a sparse solver
associated to a sparse storage of the impedance matrix is chosen.

Two families of matrix solvers exist: direct and iterative. For
sparse systems, iterative solvers are commonly preferred be-
cause the matrix is not modified during the inversion and it
maintains its sparse behavior. Unfortunately, these solvers do
not necessarily converge and the convergence rate depends on
the condition number of the treated system. Thus, the direct
sparse solver UMFPACK2.21 has been chosen.

V. NUMERICAL RESULTS

In order to evaluate the real capabilities of the MRMoM,
linear arrays of EMC dipoles of different size have been ana-
lyzed. These structures easily permit the study of the perfor-
mance as a function of the problem size. The calculation of an
EMC dipole generates a small linear system of size 50 (17 cells
on the dipole and 33 cells on the feeding line) so that an array
of dipoles generates a linear system of unknowns.
Fig. 6 presents the studied structures made of dipoles disposed
along an axis with a constant spacing of 10 mm. These elemen-
tary antennas are fed independently, thus an array ofdipoles
constitutes an -port structure.

A. Elementary EMC Dipole

The elementary EMC dipole is calculated with the conven-
tional MoM, the MRMoM with compression, and the MRMoM
without compression. The MRMoM is calculated through the
change of basis technique because all metallization interactions
are “local” and the coarse approximation is not possible. The
compression rate is defined as follows:

(9)

where is the number of elements set to zero in the com-
pressed matrix and is the size of the linear system. In the case
of the calculation of the EMC dipole, a compression rate of 50%
is achieved by simply applying the thresholding scheme. As is

1T. A. Davis and I. S. Duff, UMFPACK version 2.2: Unsymmetric-pattern
multifrontal package, 1997. [Online]. Available: ftp://ftp.cis.ufl.edu/pub/umf-
pack/
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TABLE I
COMPARISON OFCPU TIME PER MATRIX ELEMENT FOR THECALCULATION OF A MICROSTRIPLINE

(a)

(b)

Fig. 6. (a) Array of EMC dipoles. (b) Elementary EMC dipole.

shown in Fig. 7(b), this compression does not affect the cal-
culated input impedance. In the conventional MoM used here,
the current density is expanded on a rooftop basis and pulses
are used as testing functions. It is not strictly equivalent to the
MRMoM that uses a quasi- Galerkin scheme, as explained pre-
viously. Nevertheless, both computations are in good agreement
with experimental results. Fig. 7(a) shows a grayscale plot ob-
tained by taking the logarithm of the elements of the compressed
MRMoM impedance matrix. This clearly demonstrates that the
nonnegligible elements are located on or near the diagonal or

the secondary diagonals, which correspond to self-interactions
or near-functions interactions.

B. Coupling Between Two Dipoles

Fig. 8 shows results obtained from the study of the coupling
effects between two EMC dipoles. The entire structure is first
simulated using the MRMoM without neglecting elements of
the impedance matrix; this calculation is called the “fine” one. In
the second calculation, the coarse approach is used. Practically,
in that case, it means all the terms involving wavelets are set to
zero in the sub-matrix corresponding to the interaction between
the two antennas.

Fig. 8(b) depicts the input impedance of the first dipole
versus the normalized distance. The input impedance is
calculated at the frequency of 8.3 GHz, which corresponds
to the resonant frequency of the dipole. First, it is noted that
the coarse approximated solution is very close to the fine one.
The maximum margin between the two curves, even for small
distances, is about 2 dB, which means that the coarse repre-
sentation of the current reasonably models coupling between
metallizations. Secondly, the two results converge for distances
larger than . Beyond this value, the coarse approximation
gives exactly the same results as the fine calculation. These
results show that the criterion proposed in Section IV-A is
suitable. In this case, the criterion would correspond to a
normalized distance of one.

C. Linear Arrays

Fig. 9 depicts the sparsity achieved when calculating the
linear arrays with the MRMoM. The compression is obtained
by applying the rules defined in Section IV. For an array of ten
dipoles, or a system of 500 unknowns, the compression rate is
already 91% and grows quickly, reaching 98% in the case of
the array of 200 elements.

This sparsity permits an important reduction of the CPU time.
In addition to this, the memory storage is also reduced and
this reduction allows calculation of larger structures with the
MRMoM than with the conventional MoM. Indeed, with the
MRMoM approach, we never compute and store a dense ma-
trix, the impedance matrix is directly stored in the sparse format.
With this technique, we are able to go further than the memory
limits of the computer. Here, with the available memory, it is
not possible to store complex matrices larger than 56005600.
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(a)

(b)

Fig. 7. Calculation results of the elementary EMC dipole.

This size corresponds to an array of 110 dipoles. In the case of
the MRMoM, thanks to the achieved sparsity, we are able to
compute an array of 200 dipoles. Therefore, in Fig. 10, all CPU
time charts stop at arrays of 100 dipoles for the conventional
MoM, while results obtained for arrays of 200 dipoles are pre-
sented in the case of the MRMoM.

(a)

(b)

Fig. 8. Reflection coefficient as a function of the coupling.

Fig. 9. Achieved matrix sparsity.

Fig. 10(a) and (b) depicts the filling time and inversion time as
a function of the number of calculated dipoles. For arrays with
more than 25 dipoles, the filling time is shorter in the case of
the MRMoM. In the case of a 100-dipole array, the filling time
is divided by a factor of four. The reduction of the inversion
time is much more spectacular. In the case of the 100-element
array, the matrix inversion time is divided by a factor of 13. It
should be observed that, for the calculation of the solution of the
conventional MoM, a direct solver is also used. This reduction
is possible thanks to the achieved compression rate of 97.5%. In
the case of the 200-dipole array, the calculation of the solution
of the linear system of 10 000 unknowns takes only 20 min (

%).
In Fig. 10(c) and (d), the total calculation time as well as

the total required memory are depicted as a function of the
array’s size. The calculation of the 100–element array is ten
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(a) (b)

(c) (d)

Fig. 10. Performances of the approach versus the size of the problem.

times longer and requires three times more memory with the
conventional MoM than with the MRMoM. In the limiting case
of 200 dipoles, the MRMoM requires 160 Mb, while the dense
matrix would have needed 700 Mb to stored. These two curves
demonstrate the real advantages of the MRMoM to study such
structures.

Fig. 11 offers results that compare the conventional MoM
and MRMoM. The required memory is plotted on a log scale.
Since memory used in classical MoM has a behavior,
we can determine that for the MRMoM, the required memory
has a behavior.

Fig. 12 shows the calculated radiation patterns of a
ten-dipole antenna. In the two diagrams, the direct component
in the -plane is depicted. In Fig. 12(a), all elements are fed,
while in Fig. 12(b), only the fifth element is fed and the other
ports are matched. The patterns in Fig. 12(b) are called the
active radiation patterns of the fifth element of the array. The
radiation pattern of the single dipole has been added in order to
evaluate the effects of the array on the radiation pattern of an
element. This shows that the radiation pattern of a dipole in an
array is less directive than the radiation pattern of an isolated
dipole. In the two diagrams, results of the conventional MoM
and MRMoM agree well.

VI. CONCLUSION AND DISCUSSION

In this paper, a complete MRMoM analysis of 1-D structures
using matched terminations has been presented. To this end, a

Fig. 11. Required memory versus the number of unknowns (log scale).

new formulation of the MoM matched load model is proposed.
Calculation rules are also given in order to optimize the algo-
rithm and to take advantage of the wavelet scheme. The imple-
mented algorithm has been shown to be very efficient for the
simulation of linear arrays of EMC dipoles compared to conven-
tional MoM. The calculation time is reduced by a factor of 13,
while the required memory is divided by three for the calculation
of a 100-dipole array. The presented technique allows the cal-
culation of larger structures for a particular computer memory
size than with the conventional MoM.

There is another way to use wavelets in the MoM in electro-
magnetic problems. As in [5], the DWT can be applied on the en-
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(a) (b)

Fig. 12. Radiated fields of a ten dipole array.

tire impedance matrix calculated through a conventional MoM.
In this technique, basis and testing functions do not matter, and
sophisticated wavelet bases can be used even in a simple con-
ventional MoM. In [5], Daubechies orthogonal wavelets and
biorthogonal spline wavelets are used in the calculation of linear
arrays of rectangular patches. The two-dimensional nature of
this elementary antenna constitutes the main difference with the
structures presented in this paper. In [5], the application of the
DWT allows the best case to reduce the computation time by
a factor of three, while the required memory is not really re-
duced because the entire MoM matrix must be stored before the
transformation. These results are not as spectacular as results
obtained with the MRMoM. With the MRMoM, the impedance
matrix is directly calculated in a wavelet basis in a compressed
format. By this way, the transformation time is avoided and the
filling time is also reduced. This partially explains the large dif-
ferences existing between the performances of the two tech-
niques. The exact comparison will be made when the MRMoM
has been extended to two-dimensional structures. This exten-
sion is currently under investigation.

REFERENCES

[1] P. Lepeltier, J. Citerne, and J. M. Floc’h, “On the EMC dipole feed
line parasitic radiation,”IEEE Trans. Antennas Propagat., vol. 38, pp.
878–882, June 1990.

[2] Z. Xiang and Y. Lu, “An effective wavelet matrix transform approach for
efficient solutions of electromagnetic integral equations,”IEEE Trans.
Antennas Propagat., vol. 45, Aug. 1997.

[3] R. L. Wagner and W. C. Chew, “A study of wavelets for the solution of
electromagnetic integral equations,”IEEE Trans. Antennas Propagat.,
vol. 43, Aug. 1995.

[4] Z. Bahrav and Y. Leviatan, “Impedance matrix compression using itera-
tively selected wavelet basis,”IEEE Trans. Antennas Propagat., vol. 46,
pp. 1231–1238, Feb. 1998.

[5] R. Loison, R. Gillard, J. Citerne, and G. Piton, “Application of the
wavelet transform for the fast computation of a linear array of printed
antennas,” inEuropean Microwave Conf., vol. 2, Amsterdam, The
Netherlands, 1998, pp. 301–304.

[6] L. P. B. Katehi, “Application of wavelets to electromagnetics, Introduc-
tion to multi-resolution analysis,” presented at the IEEE MTT-S Int. Mi-
crowave Symp. Workshop, San Francisco, CA, June 1996.

[7] J. C. Goswami, A. K. Chan, and C. K. Chui, “On solving first-kind inte-
gral equations using wavelets on a bounded interval,”IEEE Trans. An-
tennas Propagat., vol. 43, pp. 614–622, June 1995.

[8] G. Oberschmidt and A. F. Jacob, “Accelerated simulation of planar cir-
cuits by means of wavelets,” inEuropean Microwave Conf., Amsterdam,
The Netherlands, 1998, pp. 305–310.

[9] R. Gillard, J. H Corre, M. Drissi, and J. Citerne, “A general treatment of
matched terminations using integral equations—Modeling and applica-
tions,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 2545–2553,
Dec. 1994.

[10] C. K. Chui and E. Quak, “Wavelets on a bounded interval,” inNumer-
ical Methods of Approximation Theory, D. Braess and C. L. Schumaker,
Eds. Bassel, Germany: Binkhauser Verlag, 1992, vol. 9, pp. 53–75.

[11] J. Mosig and F. Gardiol, “A dynamical radiation model for microstrip
structures,”Advances Electron. Electron Phys., vol. 59, pp. 139–237,
1982.

Renaud Loison was born on January 16, 1974, in
Saint Brieve, France. He received the Diplôme d’In-
génieur degree from the National Institute of Applied
Sciences (INSA), Rennes, France, in 1996, and is cur-
rently working toward the Ph.D. degree at INSA.

His current research interest concerns application
of wavelets in numerical methods applied to the com-
puter-aided design (CAD) of microwave antennas.

Raphaël Gillard was born on June 11, 1966, in
France. He received the Diplôme d’Ingénieur and
Ph.D. degrees in electronics from the National
Institute of Applied Sciences (INSA), Rennes,
France, in 1989 and 1992, respectively.

From 1992 to 1993, he was an Engineer with the
Society IPSIS, where he was involved with commer-
cial electromagnetic simulators. In 1993, he joined
the Microwave Group, INSA, as an Associate Pro-
fessor. His current research interest concerns numer-
ical methods applied to the CAD of microwave cir-

cuits and active antennas.

Jacques Citerne (M’98) was born on October 5,
1945, in France. He received the Doctorate degree in
physics from the University of Lille, Lille, France,
in 1978.

He was Head of the Circuits and Propagation
Group, Microwave and Semiconductor Center,
Technical University of Lille until 1981. Since 1981,
he has been a Professor of electrical engineering at
the National Institute of Applied Sciences (INSA),
Rennes, France, where he has been responsible for
the Laboratory for Telecommunication Components

and Systems (LCST), which, since 1984, has been supported by the French
National Center of Scientific Research (CNRS). The activities of LCST concern
microwave and millimeter-wave circuits and antennas, indoor communications,
spread-spectrum systems, radar, and diffraction.



LOISON et al.: MULTIRESOLUTION MoM ANALYSIS OF MULTIPORT STRUCTURES 127

Gerard Piton was born in 1940. He received
the Engineer degree from the Grenoble Radio
Polytechnic Institute (IRG64), Grenoble, France,
in 1964, and the B.Sc. degree from the Grenoble
University, Grenoble, France, in 1964.

He is currently involved with satellite antennas for
space telecommunications in the Antenna Depart-
ment, Centre National d’Etudes Spatiales (CNES),
Toulouse, France. His specific interests include
research and development of printed antennas.

H. Legay, photograph and biography not available at time of publication.


	MTT023
	Return to Contents


